Computation of Minimum Hamming Weight for Linear Codes

نویسندگان

  • E. Rostami Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman
  • R. Nekooei Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman
چکیده مقاله:

In this paper, we consider the minimum Hamming weight for linear codes over special finite quasi-Frobenius rings. Furthermore, we obtain minimal free $R$-submodules of a finite quasi-Frobenius ring $R$  which contain a linear code and derive the relation between their minimum Hamming weights. Finally, we suggest an algorithm that computes this weight using the Grobner basis and we show that under certain conditions a linear code takes the maximum of minimum Hamming weight.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix characterization of linear codes with arbitrary Hamming weight hierarchy

The support of an [n, k] linear code C over a finite field Fq is the set of all coordinate positions such that at least one codeword has a nonzero entry in each of these coordinate position. The rth generalized Hamming weight dr (C), 1 r k, of C is defined as the minimum of the cardinalities of the supports of all [n, r] subcodes of C. The sequence (d1(C), d2(C), . . . , dk(C)) is called the Ha...

متن کامل

Weight Distributions of Hamming Codes

We derive a recursive formula determining the weight distribution of the [n = (qm − 1)/(q − 1), n − m, 3] Hamming code H(m, q), when (m, q−1) = 1. Here q is a prime power. The proof is based on Moisio’s idea of using Pless power moment identity together with exponential sum techniques.

متن کامل

Algorithms for the minimum weight of linear codes

We outline the algorithm for computing the minimum weight of a linear code over a finite field that was invented by A. Brouwer and later extended by K.-H. Zimmermann. We show that matroid partitioning algorithms can be used to efficiently find a favourable (and sometimes best possible) sequence of information sets on which the Brouwer-Zimmermann algorithm operates. We present a new algorithm fo...

متن کامل

Generalized Hamming weights for linear codes

Error control codes are widely used to increase the reliability of transmission of information over various forms of communications channels. The Hamming weight of a codeword is the number of nonzero entries in the word; the weights of the words in a linear code determine the error-correcting capacity of the code. The rth generalized Hamming weight for a linear code C, denoted by dr(C), is the ...

متن کامل

Weight Distributions of Hamming Codes (II)

In a previous paper, we derived a recursive formula determining the weight distributions of the [n = (qm − 1)/(q − 1), n−m, 3] Hamming code H(m,q), when (m, q−1) = 1. Here q is a prime power. We note here that the formula actually holds for any positive integer m and any prime power q, without the restriction (m,q − 1) = 1.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 14  شماره 1

صفحات  81- 93

تاریخ انتشار 2019-04

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023